C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Problem Solving-II Subject Code: 5SC03PRS1

Semester: 3 Date : 20/03/2019

Branch: M.Sc.(Mathematics) Time : 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions (07) **a.** Generate a field of order 27. (02)**b.** Let $\beta = (1 \ 3 \ 5 \ 7 \ 9 \ 8 \ 6)(2 \ 4 \ 10)$. What is the smallest positive integer n for (02)which $\beta^n = \beta^{-5}$? Suppose $\phi: z_{30} \rightarrow z_{30}$ is homomorphism and ker $\phi = \{0, 10, 20\}$. If $\phi(13) = 9$ (02)c. then determine all elements that map to 9. **d.** True or False : Any infinite cyclic group is isomorphic to Z_n . (01)Q-2 Attempt all questions (14)a) Determine the number of elements of order 5 in $z_{25} \oplus z_5$. (06)b) Find all maximal ideal in Z_{10} . (04)Define: Conjugate Class. Also find the conjugate classes and class equation of S_3 . c) (04)OR Q-2 **Attempt all questions** (14)Check that $f(x) = x^4 + x^2 + 1$ is reducible over Z_2 ? i. a) (06)Compute 5^{15} mod 7 and 7^{13} mod 11. Also state result which you use. ii. How many homomorphism are there from z_{12} to z_{30} ? List all homomorphism. (04)b) Find all units of J[i]. (04)**c**) Q-3 Attempt all questions (14)Solve the given equation by Gauss-Elimination method (06)a) 2x - y + 2z = 2, x + 10y - 3z = 5, x - y - z = 3. Given $y_0 = 1, y_1 = 1.5, y_2 = 2.2, y_3 = 3.1, y_4 = 4.6$. Evaluate $\Delta^3 y_1$ and y_5 by b) (04)forming a forward difference table. If O(G) = 15, then how many 3-Sylow subgroup and 5-Sylow subgroups in G. (04)c) Which of them are normal?

OR

Attempt all questions 0-3

	Attempt all questions	(14)
a)	Find missing term in the following table.	(06)

			x	1	2	3	4	5	6	7	
			у	2	4	8	-	32	64	128	
	b)		Let $G = \{$	$\begin{bmatrix} a & a \\ a & a \end{bmatrix} : a$	$\in \mathbf{R}, a \neq 0$)} show that	at G is a gro	oup under	multiplic	ation.	
	c)		i) If a is an element of group G and $ a = 7$, show that a is a cube of some								
			element of G.								
			ii) Let H	$= \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \}$	': a, b, d ∈	R, ad $\neq 0$	}. Is H nor	mal subgr	oup of GL	(2:R)?	
					S	ECTIO	N – II				
Q-4			Attempt the Following questions								
		a.	Define : Boolean Ring and give an example of it.								
		b.	Find particular integral for $(2D^2 - 5DD + 2D'^2)z = 24(y - x)$								
		c.	Classify the following partial differential equations: i = 3u + 4u + 2u = 5								
			1. $5u_{xx} + 4u_{xy} + 2u_{yy} = 5$ ii $4u + 16u + 16u = 0$								
		d.	Evaluate :	$\Delta \log(f(x))$)).	Louyy	Ū				
Q-5			Attempt all questions								
	a)		Find the integral surface of the partial differential equation								
	L)		$(x - y)p + (y - x - z)q = z$, passing through the circle $z = 1$, $x^2 + y^2 = 1$.								
	D)		Solve: $xp + yq = pq$								
	C)		Solve: $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \cos 2x \cos 3x$								
_			OR								
-5	a)		Attempt all questions Apply Stirling's formula to find a polynomial of degree four which takes								
	a)		Appry surfing s formula to find a polynomial of degree rout which takes r								
			1	$\frac{\lambda}{f(x)}$	1	-1	1	-1	1		
	b)		Solve : z^2	$(v^2 + a^2 - a^2)$	(+1) = 1.	1		-	-		
	c)		Find the characteristics of $4u_{xx} + 45 + 3u_{yy} + u_x + u_y = 2$								
								,			
-6	,		Attempt all questions								
	a)		Find the solution of $\frac{dy}{dx} = e^x - y$ up to the fifth approximation. Using Picard's								
			method given that $y(0) = 0$.								
	b)		Solve: $x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z$.								
	c)		Consider the initial value problem $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(0, y) = 4e^{-2y}$ then find								
			u(x, y) and $u(1,1)$.								
			OR								
2-6			Attempt all Questions								
	a)		Determine $y(0.1)$ and $y(0.2)$ correct to four decimal places from								
			$\frac{dy}{dx} = 2x + y, y(0) = 1$. Use fourth order Runge-Kutta method.								

b) By using method of separation of variable solve two dimensional wave equation. (07)

